Applications for end-users. SDK's and tools for software developers. Custom development services for businesses.
Desktop application to view, explore and convert 3D CAD data across 30+ file formats.
Learn moreIFC, an open file format widely embraced in the AEC industry, enables information exchange and collaboration throughout the project lifecycle between diverse software applications. It contains detailed and structured data about building and construction elements, such as walls, floors, windows, etc.
Here are the currently supported versions by CAD Exchanger:
IFC2X3 is commonly used in various industries, allowing you to easily exchange data among software platforms.
IFC4 (up to 4.3) introduces new data schemas and refinements to further enhance interoperability and data exchange reliability.
CAD Exchanger can import IFC files of versions 2X3 and 4 (up to 4.3) and export IFC files of version 2X3. Such support includes:
Follow this link to check out all the CAD Exchanger products.
One of the key advantages of the IFC format is its extensive support for entities specific to the architecture and construction domain. It provides a comprehensive set of predefined entities that capture the elements and components found in projects. These entities range from fundamental elements like walls, floors, and doors to more specific elements such as windows, stairs, and HVAC systems.
IFC offers a wide range of entities and attributes that allow for the representation of design information, construction sequencing, cost estimation, project scheduling, facility management, and more. It enables rich information exchange, facilitating better communication and understanding among project stakeholders. It allows for more accurate analysis, visualization, and simulation, leading to improved decision-making throughout the project lifecycle.
Between IFC 2x3 and IFC 4, the former has certain limitations in terms of its range of geometric representations. IFC 2x3 does not support B-rep and typically represents objects with the use of polyhedra, sweeps, or basic Constructive Solid Geometry (CSG) shapes. In contrast, IFC 4 removes this limitation by offering support for full B-rep shapes. However, it is worth noting that the existing geometric representations provided by IFC 2x3 are often sufficient for many applications.
IFC has its own structure, optimized for buildings, so it provides technical possibilities for sharing data, primarily at the level of geometry. Transferring generic CAD models with shared parts and subassemblies between various assemblies to the IFC format can be challenging due to the inherent limitations of the format.
This conceptual rearrangement can involve mapping the non-BIM data to the appropriate IFC entity or property, ensuring that the relevant information is preserved and accurately represented. It may require additional effort and careful consideration to properly structure and integrate the non-BIM data within the IFC format.
This format offers advantages such as data consistency and the ability to exchange rich building information across a wide range of software platforms.
This format is predominantly used in the AEC industry. This encompasses a wide range of professionals and organizations, including architects, structural engineers, MEP (mechanical, electrical, plumbing) consultants, contractors, facility managers, and more. Additionally, industries related to building operations and maintenance, such as facility management, can also benefit from the IFC format's ability to store and share building information effectively.
To open this file, you will need a compatible software application, for example, CAD Exchanger Lab. Launch the software and navigate to the 'New file' option. Browse your computer's directories and locate the IFC file you want to open. Then select the file and click "Open". Once the import process is complete, the file should be loaded into the software, allowing you to view and interact with the 3D model and associated data.
Yes, the format provides support for a wide range of building elements, from basic components like walls and doors to more complex elements like HVAC systems, structural frameworks, and electrical systems. This allows for accurate and detailed representation of various aspects of the building.
Our software supports file conversion between various CAD and BIM formats, including Revit (.rvt) and IFC (.ifc). Launch CAD Exchanger and navigate to the 'New file' option. Select the 'Open' option and browse your computer to locate the .rvt file you want to convert.
Once the file is loaded, go to the main menu, tick 'Show export options', select .ifc, and then click 'Export'. Choose a destination folder where you want to save the converted IFC file and provide a name for the file. Click on the 'Save' button to initiate the conversion process. Once the conversion is complete, you will have an IFC file. See the full list of file compatibility in the 'How To Import (Read) and Export (Write) IFC files' section.
This format was developed by the International Alliance for Interoperability (IAI) in the late 1990s. The aim was to create an open and neutral standard for exchanging building information in the AEC industry. The first version, IFC 1.0, was released in 2000 and focused on basic geometric representation and property sets.
In subsequent years, IFC 2x3 became a significant milestone in the format's history. Released in 2005, it introduced improvements like support for complex building elements, object relationships, spatial hierarchy, and classification. These enhancements greatly enhanced the ability to exchange data and fostered better collaboration across disciplines in the AEC industry.
The most major release is IFC 4, which was introduced in 2013. Building upon the foundation of IFC 2x3, IFC 4 expanded the format's capabilities even further. It introduced advancements such as support for advanced geometries, improved representation of construction sequencing, enhanced data schemas, and inclusion of domains beyond building construction, like infrastructure.
After IFC 4, subsequent versions like IFC 4.1, 4.2, and 4.3 were developed to enhance the format by refining the schema, introducing advanced modeling and analysis support, and adding new features. Today, this format has become an indispensable industry standard that will revolutionize information exchange and facilitates collaboration.
Parasolid file format is native for Parasolid geometrical kernel, a widely used 3D geometric modeling kernel developed by Siemens PLM Software. This kernel provides a set of advanced tools and algorithms for creating, editing, and analyzing complex models. Like any kernel, Parasolid also has a persistence format known as Parasolid-XT. The Parasolid format refers to the file format used to store and exchange 3D geometry data created using Parasolid.
CAD Exchanger can import files starting from v0.15 and up to v35 and export files from v12 to v35. Such support includes:
Follow this link to check out all the CAD Exchanger products.
The primary advantage of Parasolid-XT lies in its kernel-based architecture. When you need to import data into CAD software running on the Parasolid kernel, opting for this format is a wise decision. As a kernel format, Parasolid-XT excels in its handling of B-Rep geometry, demonstrating exceptional proficiency in storing intricate B-Rep models encompassing solids, sheets, wireframes, mixed components, and even non-manifold topologies.
A notable advantage over the ACIS-SAT format is its capacity to represent the model hierarchy, albeit with some limitations (parts and bodies are somewhat synonymous). Nevertheless, in essence, the conversion to Parasolid-XT has the potential to preserve your part-assembly hierarchies, adding to its appeal as a preferred choice.
Another notable capability is the endorsement of hybrid models, specifically those in which a single logical component encompasses both B-Rep and mesh geometry. While this scenario currently represents a relatively small portion of real-world data exchange, it's gaining popularity. Consequently, the Parasolid kernel has been actively advancing to embrace these models, with the most recent iterations of the Parasolid-XT format designed to handle them.
Parasolid is a proprietary format owned and developed by Siemens PLM Software. This means that the specifications of the format are not publicly available, and only licensed software developers can fully access and utilize the features of Parasolid. While many CAD software applications support the import and export of Parasolid files, the lack of public specifications can limit the ability to develop custom tools or work with the format outside of the licensed software ecosystem.
Parasolid-XT offers some support for metadata and visual attributes, including the ability to name entities, assign colors to shapes, utilize layers, and user-defined properties as key-value pairs. However, if you're dealing with multi-body parts, PMI, or advanced metadata, it might be more beneficial to consider using alternative formats like STEP or JT. These formats provide more extensive support for those specific requirements.
The Parasolid format offers exceptional interoperability, and precise B-rep modeling ensures high geometric accuracy, making it suitable for complex engineering and design tasks. Its wide industry adoption makes it a trusted and standardized format, ensuring compatibility and long-term support.
The Parasolid format finds extensive use in various industries due to its versatility and precision. Industries such as aerospace, automotive, manufacturing, consumer electronics, and medical devices all rely on Parasolid for 3D modeling and design. Its broad adoption across these sectors facilitates the development of everything from aircraft components and automotive designs to medical implants.
In Parasolid, two primary file extensions are commonly used. The first one is .x_t (Parasolid Text), which represents a text-based format. It stores 3D geometric data in a text format, allowing for easy interoperability between different CAD systems. The second extension is .x_b (Parasolid Binary), which represents a binary format. .x_b files contain the same geometric information as .x_t files but in a more compact and faster-to-process binary format.
The Parasolid format, as a file format for storing 3D geometry, has its own history. Developed by Shape Data Limited in the 1980s, the Parasolid format was designed to enable the exchange of 3D solid models between different CAD systems.
In 1996, the company was acquired by Unigraphics Solutions Inc., which eventually became part of Siemens PLM Software. Since then, Parasolid has continued to evolve and adapt, keeping up with the ever-changing demands of the CAD industry.
With its powerful capabilities and efficient representation of 3D geometry, Parasolid quickly became a standard format for CAD software developers. Its widespread acceptance can be attributed to its seamless interoperability. Many leading CAD software applications, including Siemens NX, Solid Edge, and SolidWorks, incorporate Parasolid as their underlying kernel, allowing users to create, modify, and exchange complex 3D models with ease.
Over the years, Parasolid has played a vital role in various industries, such as automotive, aerospace, and consumer goods. Its precision and accuracy have made it an indispensable tool for designers and engineers, enabling them to tackle intricate designs and perform detailed analyses. Today, Parasolid remains a cornerstone in the CAD landscape, empowering professionals to bring their creative ideas to life in the virtual world.
Need to work with CAD files in numerous formats? No worries.
From IFC to Parasolid, CAD Exchanger gets you covered.
A CAD file is an output of a CAD software, containing key information about the designed object: its geometry and topology representation, 3D model hierarchy, metadata, and visual attributes depending on the format of the file.
Read moreIn the eighth part of the series, we touch upon the neutral data exchange standard in Building Information Modeling
Read moreThis article explores the integration possibilities with the UNIGINE engine, a powerhouse in the realm of virtual simulation and game development. Learn how it can be used in applications built with the UNIGINE engine to import CAD and 3D models.
Read more