CAD Exchanger Products
CAD Exchanger Products

How to convert files from SpaceClaim
to Open CASCADE?

Trusted by industry leaders

Convert SpaceClaim to Open CASCADE with CAD Exchanger products

CAD Exchanger Lab

CAD Exchanger Lab

Desktop application to view, explore and convert 3D CAD data across 30+ file formats.

WindowsMacOSLinux

Convert SpaceClaim to Open CASCADE with ease and flexibility:

  • hide certain details and groups before conversion
  • add XYZ section planes
  • explode assemblies
  • choose between view, projection, and selection modes
  • add measurements
Learn more 
CAD Exchanger SDK

CAD Exchanger SDK

Software libraries for C#, C++, Java, Javascript and Python.

C++C#JavaJavaScriptPython

Include a wide range of conversion options in your apps:

  • rapidly build production-ready applications with clear and structured API
  • import, export, visualize and analyze 3D CAD files, including Open CASCADE
  • complete more tasks with powerful add‑ons
Learn more 

Learn how to convert SpaceClaim to Open CASCADE with CAD Exchanger

SpaceClaim Logo

SpaceClaim is a solid modeling CAD application that runs on Microsoft Windows. It is developed by SpaceClaim Corporation, but now owned by ANSYS.

SpaceClaim’s 3D direct modeling technology is expressed by the following tools: pull, move, fill, and combine.

Pull contains most creation features which can be found in traditional CAD systems. For instance, using the Pull tool on a face by default offsets the face, but using the Pull tool on an edge rounds it.

Move relocates components and geometry, and can also be used to create patterns (often called arrays).

Fill primarily removes geometry from a part by extending geometry to fill in the surrounding area. It is commonly used for deleting rounds and holes from a model.

Combine merges parts and subtracts parts from each other.

Open CASCADE

In solid modeling and computer-aided design, boundary representation—often abbreviated as B-rep or BREP—is a method for representing shapes using the limits. A solid is represented as a collection of connected surface elements, the boundary between solid and non-solid.

Boundary representation of models are composed of two parts: topology and geometry (surfaces, curves and points). The main topological items are: faces, edges and vertices. A face is a bounded portion of a surface; an edge is a bounded piece of a curve and a vertex lies at a point. Other elements are the shell (a set of connected faces), the loop (a circuit of edges bounding a face) and loop-edge links (also known as winged edge links or half-edges) which are used to create the edge circuits. The edges are like the edges of a table, bounding a surface portion.

Compared to the constructive solid geometry (CSG) representation, which uses only primitive objects and Boolean operations to combine them, boundary representation is more flexible and has a much richer operation set. In addition to the Boolean operations, B-rep has extrusion (or sweeping), chamfer, blending, drafting, shelling, tweaking and other operations which make use of these.

Formats list

Convert SpaceClaim
to Open CASCADE

Need to work with CAD files in numerous formats? No worries.

From SpaceClaim to Open CASCADE, CAD Exchanger gets you covered.

What Our Delighted Customers Say

Frequently Asked Questions

From Our Blog

Everything you need to know about CAD file formats

Everything you need to know about CAD file formats

A CAD file is an output of a CAD software, containing key information about the designed object: its geometry and topology representation, 3D model hierarchy, metadata, and visual attributes depending on the format of the file.

Read more 
Integration with UNIGINE engine

Integration with UNIGINE engine

This article explores the integration possibilities with the UNIGINE engine, a powerhouse in the realm of virtual simulation and game development. Learn how it can be used in applications built with the UNIGINE engine to import CAD and 3D models.

Read more 
Manufacturing Toolkit and Web Toolkit enhancements, Unity performance optimization, renaming and rotating SDK examples in release 3.24.0

Manufacturing Toolkit and Web Toolkit enhancements, Unity performance optimization, renaming and rotating SDK examples in release 3.24.0

Explore the wall thickness at a specific point on a surface, enjoy four times faster Unity objects performance, and check out renaming and rotating examples in SDK.

Read more