CAD Exchanger Products
CAD Exchanger Products

How to convert SOLIDWORKS
to STL?

Trusted by industry leaders

Convert SOLIDWORKS to STL with CAD Exchanger products

CAD Exchanger Lab

CAD Exchanger Lab

Desktop application to view, explore and convert 3D CAD data across 30+ file formats.

WindowsMacOSLinux

Convert SOLIDWORKS to STL with ease and flexibility:

  • hide certain details and groups before conversion
  • add XYZ section planes
  • explode assemblies
  • choose between view, projection, and selection modes
  • add measurements
Learn more 
CAD Exchanger SDK

CAD Exchanger SDK

Software libraries for C#, C++, Java, Javascript and Python.

C++C#JavaJavaScriptPython

Include a wide range of conversion options in your apps:

  • rapidly build production-ready applications with clear and structured API
  • import, export, visualize and analyze 3D CAD files, including SOLIDWORKS and STL
Learn more 

Learn how to convert SOLIDWORKS to STL with CAD Exchanger

SOLIDWORKS

SOLIDWORKS is a proprietary format, used by the SOLIDWORKS software, a professional 3D CAD software application. It utilizes the file extensions ".sldprt" for part files and ".sldasm" for assembly files. In this format, all the necessary geometric information, features, dimensions, constraints, and other design data are stored to represent and document a 3D model.

Support of SOLIDWORKS in CAD Exchanger

CAD Exchanger can read files from version 2004 to version 2023. Such support includes:

  • B-Rep representations;
  • polygonal representations (except for versions 2004, 2007, and 2008);
  • assembly structure via external files;
  • configurations;
  • names;
  • user-defined properties;
  • graphical PMI (versions 2015-2022);
  • colors.

Follow this link to check out all the CAD Exchanger products.

Pros of the format

Comprehensive design information

The SOLIDWORKS format contains comprehensive design information. It includes not only the 3D geometry of the part or assembly but also feature history, dimensions, constraints, materials, and other design parameters. This level of detail allows for easy modification, analysis, and collaboration within the SOLIDWORKS ecosystem.

Widely used in engineering and manufacturing

SOLIDWORKS is a widely adopted CAD software, and its proprietary format is supported by various CAD tools, engineering applications, and manufacturing processes. This compatibility ensures seamless data exchange and collaboration between different stakeholders, such as designers, engineers, and manufacturers. Using the SOLIDWORKS format facilitates effective communication and streamlines the workflow throughout the product development lifecycle.

Cons of the format

Proprietary Format

The SOLIDWORKS format is proprietary, meaning it is owned and controlled by Dassault Systèmes, the company behind SolidWorks. As we wrote above, this format is widely used in engineering and manufacturing, but there are still softwares and tools that do not support SOLIDWORKS, due to its proprietary nature. While SolidWorks does provide options to export to various standard formats like STEP or IGES, the main challenge is that neutral formats do not contain all the design information, but only the final result of the design process. Also, there may be challenges in maintaining full fidelity and compatibility when working with other CAD systems.

Numerous ".sldprt" and ".sldasm" files

Managing a large number of files when working with complex models can become challenging, especially when it comes to transferring data. Some files can be lost or deliberately hidden. Without all the files together, the user only has an approximate model geometry in the form of a polygonal mesh, but all design information, including the exact geometry, is missing.

FAQ

What are SOLIDWORKS file extensions?

The file extension ".sldprt" is used for SOLIDWORKS part files. They are the building blocks of assemblies and are created and modified within the SOLIDWORKS environment.

For assembly files, SOLIDWORKS uses the ".sldasm" extension. Assembly files represent the coming together of multiple parts into a larger, functional unit. They are essential for visualizing and analyzing the interaction between different components.

Drawing files in SOLIDWORKS have the ".slddrw" extension. These files contain 2D representations of parts or assemblies. They enable the generation of design documentation suitable for further usage in product lifecycle, in particular they serve as blueprints for creating physical parts.

SOLIDWORKS also utilizes template files for creating new documents. Template files have the extensions ".prtdot" for part templates and ".asmdot" for assembly templates. These files define the default settings, styles, formats, and other parameters for creating a new part or assembly documents.

Additionally, SOLIDWORKS features a library feature functionality that allows users to create reusable design elements. Feature files for library features use the ".sldlfp" extension. These files define specific features that can be applied to parts or assemblies, saving time and effort by enabling the reuse of complex or commonly used design elements.

How to open SOLIDWORKS file?

To open this file, you will need a compatible software application, for example, CAD Exchanger Lab. Launch the software and navigate to the 'New file' option. Browse your computer's directories and locate the file you want to open. Then select it and click "Open". Once the import process is complete, the file should be loaded into the software, allowing you to view and interact with the 3D model and associated data.

History of SOLIDWORKS format

The SOLIDWORKS format history dates back to the early 1990s when SolidWorks brand was founded by Jon Hirschtick. The goal was to create a user-friendly, parametric 3D modeling software that would revolutionize the CAD industry.

In 1995, the first version of SOLIDWORKS was released, introducing a groundbreaking approach to 3D modeling. As SOLIDWORKS gained popularity, it expanded its capabilities and introduced new features with each subsequent release. The software focused on improving design efficiency, accuracy, and collaboration.

In 1997, Dassault Systèmes, a renowned software company, acquired SolidWorks Corporation, bringing SOLIDWORKS into its product portfolio. The SOLIDWORKS format has become a standard in the CAD industry.

Today, SOLIDWORKS remains one of the most widely used CAD software packages, serving millions of users worldwide. Its continuous development, integration with other technologies, and commitment to user-friendly design have solidified its position as a leading CAD solution in the industry.

STL

STL (STereoLithography) is a file format native to the stereolithography CAD software. This file format is supported by many other software packages; it is widely used for rapid prototyping, 3D printing and computer-aided manufacturing. STL files describe only the surface geometry of a three-dimensional object without any representation of color, texture or other common CAD model attributes. The STL format specifies both ASCII and binary representations. Binary files are more common, since they are more compact.

Formats list

Convert SOLIDWORKS
to STL

Need to work with CAD files in numerous formats? No worries.

From SOLIDWORKS to STL, CAD Exchanger gets you covered.

What Our Delighted Customers Say

Frequently Asked Questions

From Our Blog

Everything you need to know about CAD file formats

Everything you need to know about CAD file formats

A CAD file is an output of a CAD software, containing key information about the designed object: its geometry and topology representation, 3D model hierarchy, metadata, and visual attributes depending on the format of the file.

Read more 
Integration with UNIGINE engine

Integration with UNIGINE engine

This article explores the integration possibilities with the UNIGINE engine, a powerhouse in the realm of virtual simulation and game development. Learn how it can be used in applications built with the UNIGINE engine to import CAD and 3D models.

Read more 
Manufacturing Toolkit and Web Toolkit enhancements, Unity performance optimization, renaming and rotating SDK examples in release 3.24.0

Manufacturing Toolkit and Web Toolkit enhancements, Unity performance optimization, renaming and rotating SDK examples in release 3.24.0

Explore the wall thickness at a specific point on a surface, enjoy four times faster Unity objects performance, and check out renaming and rotating examples in SDK.

Read more